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Sulfur-bridged octadehydro[20]annulene 1c annelated with
two TTF rings was synthesized and its multi-functional proper-
ties were ascertained. The annulene exhibits paratropicity, solva-
tochromism, electrochromism and multi-redox potentials in so-
lution, and its cation radical in the solid state shows self-
association and electric conductivity.

There has been considerable current interest in supramolec-
ular tetrathiafulvalene (TTF) chemistry.1,2 Since TTF can be re-
versibly oxidized to its cation radical and dication, a supramo-
lecular system containing TTF moieties may be able to be
used in redox sensors, devices, and switches. In addition, TTF
oligomers linked by �-spacers are expected to show intra- and
intermolecular interactions between the TTF units, and hence
these molecules may exhibit multi-functionalities such as elec-
tric conductivity, solvatochromism, electrochromism, and mag-
netic properties.1c We designed sulfur-bridged bis(tetrathiaful-
valeno)octadehydro[20]annulene 1 as a candidate for multi-
functionality. Although MO calculations for 1a show a nonpla-
nar structure due to steric repulsion between the bulky sulfur
bridges, intramolecular interaction between the TTF units and
annulene moiety can be expected in the ground states of 1a,
1a�þ, and 1a2þ.
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We first attempted to synthesize 1b. However, 1bwas an ex-
tremely unstable compound, and the formation of 1b was only
confirmed by its 1HNMR and mass spectra. Therefore, 1c was
synthesized, because the electron-withdrawing ester substituents
on the TTF units can stabilize the dimeric TTF systems.

The phosphite-mediated coupling of 23 with 34 yielded 4
(57%).5 Sonogashira coupling of 4 with trimethylsilylacetylene
(TMSA) afforded 5 (64%). Deprotection of 5 with KF and 18-
crown-6 in aq. THF, followed by coupling with 2-iodothiophene
gave 7 (81%). Reaction of 7 with lithium 2,2,6,6-tetramethylpi-
peridide (LiTMP) in the presence of C6F13I led to 8 (69%). For
the construction of the [20]annulene skeleton, we employed two
pathways. Cross-coupling of 8 with 6 (2 equiv.) in the presence
of Pd(PPh3)4 (0.5 equiv.), CuI (1 equiv.), and Et3N (10 equiv.) in
benzene at room temperature for 2 h produced 1c in 28% yield,
whereas reaction of 2,5-diiodothiophene with 6 (1.5 equiv.) in
the presence of Pd(PPh3)4 (0.5 equiv.), CuI (1 equiv.), and Et3N
(10 equiv.) in benzene at room temperature for 2 h afforded 1c in
10% yield. Although the yield of the second pathway is lower
than that of the first, the second route has an advantage in that
it produces a considerable amount of 1c quickly.

The 1HNMR spectrum of 1c shows an up-field shift of the
thiophene protons at � 6.90 compared with those of 7 (� 7.02,

7.31, and 7.37), reflecting a paramagnetic ring current of the cen-
tral 4n� ring. The cyclic conjugation in 1c also reduces the ace-
tylenic character of the C�C bonds, as shown by the IR data (1c:
�C�C ¼ 2158 cm�1; 7: �C�C ¼ 2171 cm�1; 8: �C�C ¼ 2173
cm�1). As predicted byMO calculations, 1c is a nonplanar mole-
cule that exhibits no aggregation behavior. Accordingly, vapor
pressure osmometric (VPO) analysis of 1c showed no self-asso-
ciation, although 1c has a partial dipole based on the ester groups
which may work cooperatively for aggregation.6 Since 1a is pre-
sumed to be mobile based on calculations,7,8 self-association of
1c in solution may be inhibited by the movement of the sulfur
bridges. Interestingly, 1c shows solvatochromism, and the colors
of 1c in CS2 and THF are violet (�max ¼ 533 nm) and red
(�max ¼ 500 nm), respectively.

As shown in Figure 1, LDI-TOF MS of 1c showed a peak at
m=z ¼ 1064:8 (1c:Mþ ¼ 1063:99), together with small peaks at
2129.9 and 3192.6 corresponding to MMþ (m=z ¼ 2127:98) and
MMMþ (m=z ¼ 3191:97), respectively. Thus, laser irradiation
on a thin film of 1c led to the formation of aggregates of its cat-
ion radical.

The TTF units in 1c are redox-active and show two reversi-
ble two-electron redox waves by cyclic voltammetric (CV) anal-
ysis (Table 1). The TTF derivatives 7 and 8, with electron-with-
drawing ester and acetylene groups, show higher oxidation
potentials due to the reduced donor ability. In the case of 1c,

BunO2C

BunO2C S

S
S

S

S
O

I

I

+

2 3

S

S S

SBunO2C

BunO2C S

SS

S CO2Bun

CO2Bun
S

S

S

S S

SBunO2C

BunO2C I

I

4

S

S S

SBunO2C

BunO2C

SiMe3

SiMe3

S

S S

SBunO2C

BunO2C

5 6

S

S S

SBunO2C

BunO2C

7: R = H

S

S

R

R

1c

8: R = I

a b

c d

e

f

6
SI I +

f

+  6

Scheme 1. Conditions: (a) P(OMe)3, toluene, reflux, 4 h; (b)
TMSA, Pd(PPh3)4, CuI, diisopropylamine, benzene, rt, 15 h;
(c) KF, 18-crown-6, THF–H2O (98:2), 0 �C, 1 h; (d) 2-iodothio-
phene, Pd(PPh3)4, CuI, Et3N, benzene, rt, 15 h; (e) LiTMP,
C6F13I, THF, �78 �C to rt; (f) Pd(PPh3)4, CuI, Et3N, benzene,
rt, 2 h.
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the first oxidation potential (Eox1
1=2) is higher than that of 7,

whereas the second oxidation potential is lower than that of 7.
The higher Eox1

1=2 of 1c reflects a lower HOMO, and the lower
Eox2

1=2 of 1c exhibits reduced on-site Coulomb repulsion.
As expected from the CV data, 1c can be chemically oxi-

dized to the corresponding cationic species. Unfortunately,
1c�þ, 1c2þ, and 1c4þ are fairly unstable compounds, presumably
due to ring strain of the 20-membered ring. However, the UV–
vis spectra of 1c�þ, 1c2þ, and 1c4þ in solution could be satisfac-
torily measured. Oxidation of 1c with 1, 2, and 4 equiv. of
Fe(ClO4)3 in benzene–CH3CN (4:1) formed colored solutions
of the corresponding cations (Table 2). The intramolecular inter-
action between TTF and TTF�þ is weak but observed in 1c�þ.9

Thus, the major cation radical charge is localized on one ring,
and the other participates in delocalization to accept a partial
charge density [class II].10 The long absorption wavelength in
1c�þ is assigned to the intramolecular CT band. In the case of
1c2þ, intermolecular �-dimer formation (blue shift of the ab-
sorption maximum)11 did not take place in solution, because
the longer cation radical absorption was observed at 862
nm,11,12 presumably due to the nonplanar structure of 1c2þ. In-
terestingly, 1c shows an electric conductivity of �rt ¼ 2:64�
10�3 S�cm�1 after doping with iodine.13
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Table 1. Redox potentials of 1c, 7, 8, and TTF referred to Ag/
Agþ.a

Compound Eox1
1=2 /V Eox2

1=2 /V �EðE2 � E1Þ /V
1c 0.57 (2e)b 0.78 (2e)b 0.21
7 0.53 (1e)b 0.83 (1e)b 0.30

8 0.56 (1e)b 0.83 (1e)b 0.27
TTF 0.11 (1e)b 0.39 (1e)b 0.28

aConditions: 0.1M Bu4NClO4 in o-dichlorobenzene, Ag/Agþ reference elec-
trode, Pt working and counter electrodes, 100mV s�1; the oxidation potential of
ferrocene, Fc/Fcþ = 0.29V referred to Ag/Agþ. bThe number of electrons trans-
ferred.

Table 2. UV–vis data of 1c, 1c�þ, 1c2þ, and 1c4þ in benzene/
CH3CN (4:1).a

Compound Color �max nm (log")
1cb red 310 (4.85), 371 (4.84), 504 (3.82)
1c�þc orange yellow 311 (4.84), 371 (4.76), 819 (3.86), ca. 1850 (2.90)
1c2+d brownish yellow 315 (4.71), 373 (4.62), 419 (4.62), 862 (4.25)

1c4+e bluish green 315 (4.72), 391 (4.61), 707 (4.23)
aCations 1c�þ, 1c2þ, and 1c4þ were prepared by mixing 1c with 1, 2, and 4 equiv.
Fe(ClO4)3.3H2O in benzene/CH3CN (4:1), and the "-values were determined by
quantitative formation of cations. b7:30� 10�5 M. c1:90� 10�4 M. d1:59�
10�4 M. e1:11� 10�4 M.
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Figure 1. LDI-TOF MS of the tetrathiafulvaleno[20]annulene
1c.
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